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Hyperparathyroidism occurs in most patients during the

progression of chronic kidney disease (CKD) and one

of its initiating events, reduced serum levels of

1,25-dihydroxyvitamin D, results from a decrease in renal 1a

hydroxylase activity, which converts 25-hydroxyvitamin D

to its activated form. The combination of persistently high

parathyroid hormone (PTH) and low 1,25-dihydroxyvitamin D

is associated with bone loss, cardiovascular disease, immune

suppression and increased mortality in patients with

end-stage kidney failure. Recent studies in dialysis patients

suggest that paricalcitol, a selective activator of the vitamin D

receptor (VDR), is associated with a more favorable efficacy to

side effect profile than calcitriol, with less morbidity and

better survival. One hypothesis derived from such studies

suggests that systemic activation of VDRs may have direct

effects on the cardiovascular system to decrease mortality in

CKD. Although current guidelines for regulating serum

calcium, phosphate and PTH recommend specific

interventions at the various stages of CKD to prevent or

postpone irreversible parathyroid disease and decrease

cardiovascular morbidity and mortality, emerging data

suggest that vitamin D therapy may prolong survival in this

patient population by mechanisms that are independent of

calcium, phosphate and PTH. It is suggested that a

re-evaluation of current treatment recommendations is

needed and that future research should focus on

mechanisms that distinguish potential tissue specific

benefits of selective VDR activators in patients with CKD.
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VITAMIN D TREATMENT AND SURVIVAL IN DIALYSIS
PATIENTS

Two recent epidemiologic studies revealed a potentially
important systemic role for vitamin D receptor (VDR)
activation in the survival of dialysis patients.1,2 The first study
revealed that the use of the selective VDR activator,
paricalcitol, was associated with an adjusted 16% survival
benefit when compared to the use of calcitriol.1 This was
observed not only in patients who remained on their respective
treatments throughout the evaluation period, but also in that
subgroup who switched from calcitriol to paricalcitol
(Figure 1). In the second retrospective study, patients who
received injectable vitamin D (calcitriol or paricalcitol) had a
20–25% higher survival rate than those who did not receive
injectable vitamin D over the same 2-year period (Figure 2).2

All-cause mortality, as well as cardiovascular mortality, was less
in the group receiving injectable vitamin D, after adjusting for
potential confounders. Interestingly, the survival benefit of
vitamin D was apparent across all quintiles of calcium,
phosphate and parathyroid hormone (PTH) (Figure 2),
particularly after using marginal structural analysis to account
for their time-dependent changes during the evaluation
period.2 This suggests that the use of pulsatile calcitriol or
paricalcitol therapy may possibly mitigate the deleterious
effects of elevated phosphate, calcium and PTH on mortality.3

Although only one randomized comparison between injectable
calcitriol and paricalcitol has been performed in this patient
population, the results from the study show that paricalcitol
was more effective than calcitriol in suppressing PTH, while
having fewer episodes of sustained elevated calcium and
phosphate as identified in the post hoc analysis.3 Thus,
although the potentially better side effect profile of paricalcitol
may explain, in part, why its use is associated with lower
morbidity and mortality,1 the suggestion that pulsatile vitamin
D in general may also be associated with improved survival
(compared to those not taking injectable vitamin D),2 suggests
that widespread VDR activation may contribute to improved
outcomes in patients with chronic kidney disease (CKD).

POTENTIAL MECHANISMS FOR A SURVIVAL BENEFIT FROM
SYSTEMIC VDR ACTIVATION
Vascular calcification

Because at least half of the deaths among dialysis patients are
attributed to cardiovascular disease, the potential benefit of
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vitamin D treatment is likely to include mechanisms related
to the development of vascular calcification, atherosclerosis
and cardiac dysfunction. Several studies in patients with CKD
have now correlated arterial calcification with the presence of
coronary artery disease,4 peripheral vascular disease,5 left
ventricular hypertrophy 6 and mortality.5–9 Although it is still
not clear how calcified arteries may cause acute cardiovas-
cular events, recent studies have documented increased
mortality rates in dialysis patients who have arterial
calcifications7 (Figure 3). Increased pulse pressure, left
ventricular hypertrophy and arrythmias, resulting from
arterial stiffness, have been suggested as potential effects of
arterial calcification that may lead to cardiovascular disease
and death.9–11 The recent finding that significant coronary
artery calcification is present in patients of stages 3 and 4
CKD,12 a population which is also at high risk for
cardiovascular events,13 underscores the importance of early
diagnosis and treatment.

A current hypothesis for the development of arterial
calcification in dialysis patients has centered on the effects of

high phosphate levels14 or uremic serum15,16 on vascular
smooth muscle cells (VSMC) that reside within the medial
portion of the arterial wall (Figure 4). In this model, elevated
serum phosphate increases the intracellular phosphate
concentration, which stimulates the transcription factor, core
binding factor alpha 1 (cbfa1). Cbfa1 has its primary role in
cartilage cells and osteoblasts to promote bone formation
through its stimulation of type I collagen and non-
collagenous proteins (e.g. bone sialoprotein, osteocalcin,
osteopontin) into the surrounding matrix to support the
calcification process.17 Owing to its abnormal expression of
cbfa1, the VSMC phenotype becomes more like that of an
osteoblast-like cell and subsequent calcification of the
extracellular matrix becomes amplified by excess phosphate
and calcium loading,18 hypercalcemia19 and low serum fetuin
levels.20 Although cbfa1 may have a central role in promoting
calcification, other potential inducers of calcification include
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Figure 1 | (a) Survival curves in dialysis patients treated with
either injectable paricalcitol or calcitriol. (b) Survival curves in
dialysis patients who switched from calcitriol to paricalcitol or from
paricalcitol to calcitriol. (From Teng et al.1 with permission.)
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Figure 2 | (a) Survival curves in dialysis patients treated with
injectable vitamin D (black) compared to patients not treated
with injectable vitamin D (white). Mortality hazard ratios across all
quintiles of phosphate (b), calcium (c) and PTH (d). The first quintile
represents the lowest levels and the fifth quintile represents the
highest levels. (From Teng et al.2 with permission.)
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bone morphogenetic protein-2,21 interleukin-1 beta (IL-
1b),22 IL-6,22 type I collagen,23 cyclic adenosine monophos-
phate,24 tumor necrosis factor-a,25oxidative stress,26 Msx2
transcription factor27 and hypercalcemia from high-dose
vitamin D28 (Table 1).

Inhibitors of calcification have recently been identified
from gene knockout models and cell culture studies.
Osteopontin29 and matrix gla protein (MGP)29 are both
potent inhibitors of arterial calcification as demonstrated in
mice that have been made genetically deficient in these
proteins and which subsequently develop significant calcifi-
cation. Moreover, mice containing double knockout disrup-
tions of both osteopontin and MGP show more arterial
calcification than with single protein deletions of either,29

indicating that both are important in preventing the
calcification process by different mechanisms. Importantly,
osteopontin needs to be in its phosphorylated form to inhibit
calcification.30 The mechanism for the inhibitory effect of
MGP may be related, in part, to its binding and neutraliza-
tion of bone morphogenetic protein-2;31 gamma-carboxyla-
tion of MGP is necessary for it to inhibit calcification32 and
to bind to bone morphogenetic protein-2.31 Other inhibitors
of in vitro induced calcification include type IV collagen,23

BMP-7,33 phosphonoformic acid through its inhibition of the
sodium-phosphate co-transporter in VSMC,14 parathyroid
hormone-related protein,34 C-natriuretic protein34 and high-
density lipoprotein.22

Activation of VDRs by vitamin D therapy may directly
mitigate cardiovascular disease by inhibiting the production
of proteins that are either necessary for arterial calcification
or by stimulating proteins that inhibit mineralization
(Table 2). For example, VDRs are present in VSMCs, and

1,25-dihydroxyvitamin D treatment of osteoblastic cells is
known to inhibit the synthesis of type I collagen,35 which is
the major ‘scaffold’ for calcification of the extracellular
matrix. Perhaps more importantly, other studies of cultured
osteoblastic cells show that a vitamin D response element is
present within the promoter region of cbfa1 and that
stimulation with 1,25-dihydroxyvitamin D reduces cbfa1
synthesis.36 Moreover, inhibition of bone morphogenetic
protein-2 production by 1,25-dihydroxyvitamin D in cul-
tured osteoblasts has been recently documented.37 Calcitriol
also inhibits circulating levels of IL-1b and IL-6,38 which are
not only implicated in calcification but also have important
roles in mediating the inflammatory response to atheroma
formation (see below). Treatment of cells in vitro with 1,25-
dihydroxyvitamin D also stimulates the production of
MGP,39 osteopontin35 and natriuretic peptide receptor-C.40

Atherosclerosis

Although VDR activation may mitigate the effects of uremia-
induced arterial calcification, emerging data support a
potential role for VDR activation in preventing or ameliorat-
ing the pathogenesis of atherosclerosis. Current models of
atherosclerosis include the inter-related functions of T
lymphocytes and macrophages as initial stimulators of
intimal thickening and plaque formation in susceptible
arteries.41 Th1 lymphocytes infiltrate into the subendothelial
space, in response to oxidized low-density lipoprotein, and
secrete interferon-g, which is a potent macrophage activator
(Figure 5). Activated macrophages in turn secrete the
cytokines IL-1b, IL-6 and tumor necrosis factor-a, which
further enhance monocyte recruitment, increase the oxida-
tion of low-density lipoprotein and promote the production
of membrane metalloproteinases (MMPs)that function to
destabilize the plaque to cause rupture and thrombosis
within the lumen. Th1 cells produce interferon-g, which
suppresses Th2 lymphocytes, cells that are antiatherogenic
through their production of IL-10, which inhibits macro-
phage activation.41

The potential ameliorative effects of VDR activation on
the pathogenesis of atherosclerosis may occur by enriching
the Th2 cell population of lymphocytes (Table 3). For

Table 1 | Potential inducers and inhibitors of arterial calcifi-
cation in CKD

Inducers
Phosphate
Uremic serum
Core binding factor alpha1 (cbfa1)
Bone morphogenetic protein-2 (BMP-2)
PTH
Msx2
b-Catenin
Interleukin-1b and -6
Transforming growth factor-alpha (TGF-a)
Type I collagen
Cyclic AMP
Oxidative stress
Hypercalcemia (high-dose vitamin D)

Inhibitors
Matrix gla protein (MGP)
Osteopontin (phosphorylated)
Type IV collagen
Phosphonoformic acid (PFA)
Parathyroid hormone-related protein (PTHrP)
C-natriuretic protein
High-density lipoprotein (HDL)
Bone morphogenetic protein-7

Table 2 | Potential ameliorative effects of VDR activation on
arterial calcification

Calcification VDR activation

Inducers
Type I collagen k
Cbfa1 k
BMP-2 k
b-catenin k Activation
Interleukin-Ib, IL-6, TGF-a k

Inhibitors
Matrix gla protein (MGP) m
Osteopontin m
C-natriuretic peptide (CNP) m CNP-receptors

Kidney International (2006) 69, 33–43 35

DL Andress: Vitamin D in chronic kidney disease r e v i e w



example, calcitriol treatment of cells results in marked
inhibition of interferon-g42 and upregulation of IL-10.43 In
addition, IL-1b and IL-6 are inhibited by 1,25-dihydroxy-
vitamin D,38 which would also mitigate or inhibit macrophage
activation and prevent plaque instability. Although VDR
activation is a major stimulus for IL-10 production, it also
stimulates IL-4 synthesis44, which is important in promoting
the anti-atherogenic function of Th2 cells. An additional
mechanism by which VDR activation may sustain plaque
stability is by preventing thrombosis as demonstrated in
VDR-knockout mice that develop arterial thromboses in
association with downregulation of antithrombin and
thrombomodulin and upregulation of tissue factor.45

Whereas these studies suggest possible mechanisms for a
beneficial effect of VDR activation at the cellular level, studies
in animals and humans also show potential ameliorative
effects on the cardiovascular system by other mechanisms.
These include VDR effects on bone and the parathyroid
glands as well as on cardiac function.

VDR ACTIVATION, BONE LOSS AND CARDIOVASCULAR
DISEASE

Low levels of serum 1,25-dihydroxyvitamin D are responsible
for increased PTH production, decreased intestinal calcium

and phosphorus absorption, reduced bone formation and
increased bone resorption. Elevated PTH increases myocar-
dial cell calcium concentration in uremic animal models of
heart disease45,46 and parathyroidectomy in dialysis patients
improves left ventricular hypertrophy47 and long-term
survival rates.48 The combination of high PTH and low
1,25-dihydroxyvitamin D levels in predialysis CKD patients
results in high bone turnover49 with bone loss,50 and
treatment with vitamin D compounds lowers PTH and bone
turnover toward normal levels.49 Because VDR activation was
recently shown in mouse knockout models to be required to
promote bone formation51 and to maintain normal bone-
forming capability by inhibiting osteoblast apoptosis,52 the
bone accretion effects of vitamin D treatment in CKD are
likely to be due to the combination of enhanced bone
formation and reduced bone resorption. Thus, from a bone
perspective, optimizing circulating PTH and 1,25-dihydroxy-
vitamin D levels into the normal range in early
and moderate CKD may be required to maintain
normal bone remodeling and prevent adynamic bone disease.
The finding that vitamin D treatment prevents bone loss
in patients with stages 3 and 4 CKD53 is consistent with
this notion (Figure 6).

The potential role of bone loss as a contributor to arterial
calcification in CKD has not been fully explored. However,
recent longitudinal data in postmenopausal women without
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Figure 5 | Role of T-lymphocytes and macrophages in the
development of atherosclerosis. (From Li and Glass41 with
permission.)

Table 3 | Potential ameliorative effects of VDR activation on
arterial disease

Arterial disease VDR activation

Atheroma formation
Inducers

Th1 cells k (bykIFNg)
IL-1b, IL-6 k

Inhibitors
Th2 cells m (bymIL-10)
IL-4 m

Thrombogenesis k
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et al.53 with permission.)
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known CKD reveal a significant correlation between elevated
rates of bone loss and increased coronary artery calcification
(Figure 7).55 This finding may have relevance in the dialysis
population because low hip bone mineral density (Figure 8)
and excessive coronary artery calcification7 have both been
associated with decreased survival. From these data, it follows
that it may be important to develop treatment strategies that
prevent bone loss in an effort to decrease arterial calcification
and cardiovascular disease in CKD patients.

There are other potential mechanisms where VDR
activation may ameliorate or prevent cardiovascular disease
(Table 4). Decreased VDR activity increases circulating renin
levels and blood pressure56 and causes left ventricular and
mycocyte hypertrophy in genetically manipulated mouse
models.57 Interestingly, earlier clinical studies had established
a significant relationship between low circulating levels of
1,25-dihydroxyvitamin D and elevated serum renin.58

Treatment with 1,25-dihydroxyvitamin D also decreases
endothelium-induced atrial natriuretic peptide levels while
ameliorating cardiac myocyte hypertrophy.59 VDR activation
downregulates atrial natriuretic peptide transcription by
nuclear interactions that do not involve retinoid X receptor
-VDR heterodimerization.60,61 VDR activation is also im-
portant in downregulating endothelin receptors in cultured
osteoblasts,62 which may help explain how vitamin D
treatment prevents or mitigates endothelin-induced cardiac
remodeling and left ventricular dysfunction63,64 as well as

arterial vascular calcification.65 Recent clinical studies have
shown that calcitriol-induced reductions in PTH,66,67 atrial
natriuretic peptide and renin–angiotensin II66 are associated
with amelioration of left ventricular hypertrophy in patients
receiving dialysis.

A working hypothesis (Figure 9) that includes these factors
suggests that VDR activation (by treatment with injectable
vitamin D) may play a role in preventing uremic-induced
arterial calcification through inhibition of cbfa1 and type I
collagen synthesis and stimulation of the calcification
inhibitor, MGP. VDR activation would also have indirect
roles in preventing calcification through its inhibition of
PTH-stimulated bone loss and its direct stimulation of bone
formation.51,52 How bone loss in uremia contributes to
arterial calcification is still a mystery but plausible mechan-
isms include internal calcium loading (calcium shift from
bone to vessel) and/or the release of bone growth factors,
such as BMP-2, which has been implicated as a pathogenic
factor in some models of arterial calcification.31

VITAMIN D IN THE PATHOGENESIS OF SECONDARY HYPER-
PARATHYROIDISM

Several studies have clearly documented that early declines in
the glomerular filtration rate (GFR) result in falling serum

Table 4 | Potential ameliorative effects of VDR activation on
effectors of cardiac dysfunction

Organ/cell dysfunction Putative effectors VDR activation

Cardiac and myocyte
hypertrophy

Renin–angiotensin k

Atrial naturetic peptide (ANP) k
Endothelin troponin T k

Left ventricular
hypertrophy

PTH, ANP and renin–angiotensin k

PTH k
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Figure 7 | Association of aortic calcification with increased rates
of bone loss in a longitudinal study of post-menopausal women.
(From Schulz et al.54 with permission.)
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1,25-dihydroxyvitamin D and increase PTH before there are
changes in serum phosphate and calcium.68–70 In most
patients, 1,25-dihydroxyvitamin D levels decline to the lower
limit of normal in late stage 2 CKD (stage 2 CKD: estimated
GFR, 60–89 ml/min/1.73 m2), and by the time patients have
progressed through stage 3 CKD (estimated GFR, 30–59 ml/
min/1.73 m2) many have low levels of 1,25-dihydroxyvitamin
D and elevated PTH. Patients with stage 4 (estimated GFR,
15–29 ml/min/1.73 m2) and stage 5 (estimated GFR, o15 ml/
min/1.73 m2) CKD have the worst combination of abnor-
malities with hyperphosphatemia and hypocalcemia further
stimulating PTH secretion, independently of low 1,25-
dihydroxyvitamin D levels. It is also during these later stages
that bone loss,50 cardiovascular events3 and death13 reach
their highest prevalence before dialysis is initiated.

A major determinant of low 1,25-dihydroxyvitamin D
production is the reduction in renal mass, which results in
less 1a hydroxylase being available for converting 25-
hydroxyvitamin D to 1,25-dihydroxyvitamin D. Recently,
circulating levels of fibroblast growth factor-23 (FGF-23)
have also been implicated as a potential early change
responsible for depressed 1,25-dihydroxyvitamin D.71 Later
in the course of CKD progression, hyperphosphatemia
reversibly suppresses 1a hydroxylase activity and is therefore
a remediable factor that can raise 1,25-dihydroxyvitamin D
levels when appropriately treated.72 Metabolic acidosis73 and
uremic toxins,74 which also suppress 1a hydroxylase activity
and 1,25-dihydroxyvitamin D synthesis, would be expected
to have a growing impact in stages 4 and 5 CKD when their
accumulation becomes maximal (Figure 10).

Independent of CKD progression is the issue of 25-
hydroxyvitam D deficiency, which is prevalent even in
subjects without kidney disease.75,76 Interestingly, low sub-
strate levels of 25-hydroxyvitamin D are associated with low
1,25-dihyroxyvitamin D levels77 except for those with normal
renal function.78 Thus, there is interest in knowing whether
treatment with vitamin D (ergocalciferol or cholecalciferol),
to raise 25-hydroxyvitamin D levels, will lower PTH in CKD
patients. Some doubt exists, however, about the potential
success of ergocalciferol monotherapy as cellular uptake of
25-hydroxyvitamin D may be dependent on combined

therapy with calcitriol to enhance the cellular uptake of 25-
hydroxyvitamin D (Figure 11).79 This notion is also
consistent with the findings that 1,25-dihydroxyvitamin D
treatment enhances megalin expression80 and that megalin
endocytosis of the 25-hydroxyvitamin D–vitamin D binding
protein complex from the glomerular ultrafiltrate is the
major mechanism for delivering 25-hydroxyvitamin D to the
1a hydroxylase enzyme in the proximal tubule.81

VDR ACTIVATION AND PARATHYROID GLAND GROWTH

Elevated PTH levels in CKD are a product of increased
parathyroid cell number and increased PTH synthesis (Figure
12). Activation of the VDR by di-hydroxylated vitamin D
compounds controls both of these functions by suppressive
mechanisms. Parathyroid gland enlargement occurs initially
as a result of diffuse cell proliferation, in association with low
circulating 1,25-dihydroxvitamin D levels. As 1,25-dihydrox-
yvitamin D is known to stimulate VDR synthesis,82 it is
assumed that the low circulating vitamin D levels in CKD
contribute directly to the low VDR expression in uremic
parathyroid glands.83 Recent data also show that increa-
sed PTH downregulates VDR expression.84 Studies in
uremic animals show that treatment with calcitriol prevents
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parathyroid cell proliferation and gland enlargement by inhibit-
ing specific growth factors (TGF-a, epidermal growth factor
receptor) and by stimulating proteins (p21, p27) that control
the cell cycle to inhibit DNA synthesis.85,86 VDR activation
inhibits PTH synthesis by binding to its vitamin D response
element on the PTH gene and inhibiting its transcription.87

Because 1,25-dihydroxyvitamin D also upregulates calcium
sensing receptor (CaSR) synthesis,88 it is likely that
parathyroid gland VDR activation facilitates the effect of
calcium on the CaSR to suppress PTH secretion.89 Whereas
parathyroid gland CaSR activity is downregulated in experi-
mental uremia, its expression does not coincide with
increased cell proliferation,90 suggesting that it may not have
a direct role in preventing parathyroid hyperplasia, in
contrast to the suppressive effects of the VDR.

VDR activation: molecular events

The VDR is found ubiquitously throughout the body and,
although present in most organs, its function in many
locations has not been established (Table 5). However, within
such organs as the parathyroid cell, osteoblast and intestinal
enterocyte, VDR action has been carefully examined. The
VDR resides within the cell cytosol where it binds
preferentially to di-hydroxylated vitamin D compounds. This
complex is then rapidly translocated to the nucleus where it
first binds to the retinoid X receptor and then to the vitamin
D response element located in the promoter region of
selected genes (Brown et al.91). Once bound, the DNA
undergoes a conformational change that brings it into
contact with distinct nuclear proteins that are cell and gene
specific. The gene and its nuclear protein partners determine
whether the transcription of the final protein product is
either up- or downregulated (Table 6). For example, in
osteoblastic bone cells, VDR activation results in the
upregulation of osteocalcin and MGP and the downregula-
tion of type 1 collagen and bone sialoprotein.35 In intestinal
cells, the VDR upregulates calbindin, and other calcium
transport proteins.92 In the kidney, VDR expression is
responsible for upregulating at least 50 genes (including the
CaSR) and downregulating 40 genes (including renin).93

In addition to the genomic effects of VDR activation there
are well-described non-genomic events that are mediated by a
putative cell surface VDR.94 These effects are induced within

minutes upon exposure to activated vitamin D compounds
and they involve secondary signaling mechanisms that
interact with other signaling networks.95–98 Potential effects
of this type of stimulation include changes in ion channel
responses,96 insulinotropic effects,97 calcium flux,97 adipocyte
metabolism98 and antiapoptotic pathways.52

Vitamin D treatment: structural and functional differences of
vitamin D compounds

The use of the first generation of activated vitamin D
compounds occurred shortly after the discovery that 1,25-
dihydroxyvitamin D was the most active vitamin D
metabolite.99 Synthetic 1,25-dihydroxyvitamin D (calcitriol)
proved to bind more selectively to the VDR than vitamin D
or 25-hydroxyvitamin D, thus establishing it as the most
potent form of vitamin D for stimulating intestinal calcium
and phosphate absorption. The second-generation com-
pounds involved a side-chain modification, which removed
the hydroxyl group from the 25 position [1a-hydroxyvitamin
D3 (alphacalcidol), 1a-hydroxyvitamin D2 (doxercalciferol)].
Because these compounds lack the 25-hydroxyl group, they
are unable to bind selectively to the VDR and are therefore
prohormones. Both require 25-hydroxylation in the liver and
both have equivalent potency in animal studies.100 The third
generation is composed of a group of 1- and 25-hydroxylated
vitamin D compounds with either ring structure modifica-
tions [19-nor-1,25-dihydroxyvitamin D2 (paricalcitol)], or
side-chain modifications [22-oxacalcitriol (maxicalcitol)],
both of which have less calcemic and less phosphatemic
effects when compared to calcitriol.101,102

Studies in uremic rats indicate that paricalcitol inhibition
of PTH synthesis is similar to calcitriol but without
significant elevations in serum calcium and phosphate.103,104

The mechanism for paricalcitol’s low calcemic effect is due to
reduced stimulation of intestinal calcium transport proteins

Table 5 | Tissue distribution of the VDR

System Tissue

Endocrine Parathyroid, pancreatic B cells, thyroid C cells
Cardiovascular Arterial smooth muscle cells, cardiac myocytes
Musculoskeletal Osteoblasts, chondryocytes, striated muscle
Gastrointestinal Esophagus, stomach, intestine
Hepatic Liver parenchymal cells
Renal Tubules, JG apparatus (renin), podocytes
Reproductive Testis, ovary, uterus
Immune T cells, B cells, bone marrow, thymus
Respiratory Lung alveolar cells
Epidermis Keratinocytes, hair follicles
Central nervous system Brain neurons

Table 6 | Partial list of proteins regulated by VDR activation

Downregulated Upregulated

PTH (p) Osteopontin (o)
Cbfa1 (o) Matrix gla protein (o)
BMP-2 (k,o) RANK-L (o)
Bone sialoprotein (o) Calbindin (i, k)
Type I collagen (o) Type IV collagen (k)
IFN-g, IL-Ib, -2, -6, -12(l, s) IL-10, IL-4 (l)
GM-CSF (l) Megalin (k)
TNF-a, EGF-receptor (p) Insulin receptor (m)
Renin (k) VDR (k, p)
Endothelin receptor (o) CaSR (k, p)
PCNA (k, p, t) p21 (p, t)
Cyclin E (f, t) p27 (t)
Tissue factor (l, k, m) Antithrombin (li)
PPARU2 (ad) Thrombomodulin (a, li, k,m)
ANP (h) E2F3 (k)
b-catenin (a, t) 24-hydroxylase (k)
Myogenin (mu) Insulin-induced gene-1 (ad)

a, aorta; ad, adipocytes; f, fibroblasts; h, heart; i, intestine; k, kidney; l, lymphocytes;
li, liver; m, monocytes; mu, muscle; o, osteoblast; p, parathyroid cells; s, serum;
t, tumors.
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(e.g. calbindin, CAT and PMAT) compared to calcitriol,92

thus conferring a selective activator function. In comparison
studies between paricalcitol and doxercalciferol in normal
and uremic rats, similar differences are noted where
doxercalciferol induces a greater calcemic and phosphatemic
effect due to greater enhancement of intestinal calcium and
phosphate absorption.104 Although head-to-head compar-
isons of these two compounds have not been performed in
patients with CKD, there are indications that paricalcitol has
a more beneficial side effect profile than doxercalciferol.105,106

For example, dialysis patients treated with paricalcitol
achieved a 50% reduction in PTH over 12 weeks with serum
calcium increasing by 3.5% from baseline (Po0.02) and
serum phosphate increasing by 8% (p-NS).104 In contrast,
dialysis patients who were treated with doxercalciferol and
who also achieved a 50% reduction in PTH over the same
time course had a mean serum calcium elevation of 7%
(Po0.01) and a mean serum phosphate elevation of 19%
(Po0.01).106

Management of hyperparathyroidism in CKD stages 3 and 4

Current recommendations for managing the hyperparathyr-
oidism of CKD have suggested that treatment should begin in
stage 3 CKD patients.107 Opinion-based recommendations
for patients with elevated PTH include normalization of 25-
hydroxyvitamin D levels using ergocalciferol (vitamin D2).
However, despite the finding that many CKD patients have
mild to moderately low 25-hydroxyvitamin D levels,77 there
are no studies in this population which have evaluated the
efficacy of ergocalciferol in lowering PTH. In contrast,
compounds such as calcitriol,108,109 doxercalciferol110 and
paricalcitol111 have been shown to be effective in lowering
PTH levels in patients with moderate CKD, although
important differences in their side-effect profiles are
apparent. For example, a 24-week doxercalciferol treatment
resulted in a 5% rise in serum calcium by week 20 (Po0.012)
and a 6% rise in serum phosphate at week 24 (Po0.05)
compared to the placebo group,110 whereas treatment with
paricalcitol did not result in elevated serum calcium or
phosphate at any time point when compared to placebo
controls.111 These findings are consistent with observations
in rats showing that doxercalciferol caused elevated serum
calcium and phosphate because of enhanced intestinal
absorption, in contrast to comparable doses of paricalcitol,
which did not enhance calcium or phosphate absorption or
the calcium� phosphate product in uremia.104

Few studies are available that have analyzed the bone
response to vitamin D compounds in predialysis CKD.
Calcitriol108,109 and alphacalcidol49 reduce elevated bone
turnover to more normal levels and bone mineral density
increases with long-term alphacalcidol treatment.50 Conco-
mitant with the reduction in PTH-induced high bone
turnover, vitamin D treatment also reduces serum bone
alkaline phosphatase to more normal levels.110,111 However,
despite the improved changes in bone alkaline phosphatase,
studies are still needed to examine the effects of paricalcitol

and doxercalciferol on bone histology, bone mineral density,
fracture and cardiovascular morbidity.

Adjunctive treatments and soft-tissue calcification: calcium
loading and calcimimetics

Hypercalcemia, from high doses of calcitriol, has the
potential to induce arterial calcification.28 Whereas one in
vitro study has shown that supra-pharmacologic concentra-
tions of calcitriol (10�7

M) can directly induce VSMC
calcification,112 other studies have not shown this effect,113

suggesting that some in vitro experiments may not realisti-
cally mimic the clinical conditions of CKD. However, excess
calcium loading is a major contributor to arterial calcifica-
tion17,114,115 and bone loss116 in dialysis patients and, because
the effects of calcium loading are not always reflected by the
ambient calcium levels,17 quantification of the cumulative
intake of calcium is more likely to provide reassurance that
the patient is not in excessive calcium balance. Although the
current recommendation to limit calcium intake to o2 g per
day (1500 mg as the calcium binder)107 is a good initial step
toward preventing excess calcium loading, this may still not
be sufficient as daily calcium intakes of as low as 1100 to
1350 mg (elemental) are associated with arterial calcification
in dialysis patients.5,115

The issue of calcium loading also becomes important
when adjunctive treatment of severe hyperparathyroidism
with CaSR agonists (calcimimetics)117 is utilized. Calcium
levels often decline during calcimimetic therapy by unknown
mechanisms and the initial therapeutic response to this side
effect has been to raise the serum calcium by calcium loading,
either from oral supplements or by employing the use of high
dialysate calcium concentrations (42.5 mEq/l).

A re-evaluation of the K/DOQI guidelines for vitamin D
therapy

Stage 5 CKD. Current K/DOQI recommendations for
dialysis patients suggest that injectable vitamin D therapy
should be stopped when phosphate levels are too high
(45.5 mg/dl), when intact PTH levels are too low (o150 pg/ml)
or when the calcium� phosphate product exceeds
55 mg2/dl2.107 However, in the light of the new data regarding
improved survival in dialysis patients at all levels of
phosphate and PTH (Figure 2),2 it appears that these
recommendations should be re-evaluated. Although high
phosphate is certainly important as a contributor to
mortality in dialysis patients,2 as well as in patients with
moderate CKD,118 the advice to discontinue vitamin D
therapy as a method to control phosphate levels would only
be appropriate for those active vitamin D compounds that
have been shown to stimulate calcium and phosphate
absorption significantly (e.g. calcitriol, alphacalcidol, doxer-
calciferol). Based on the current literature, it appears that
the best practice would be to utilize paricalcitol to control
PTH secretion, while minimizing calcemic and phosphatemic
effects, and to limit dietary indiscretions of phosphate intake
while ensuring the use of non-calcium containing phosphate

40 Kidney International (2006) 69, 33–43

r e v i e w DL Andress: Vitamin D in chronic kidney disease



binders. The goals of managing phosphate levels and vitamin
D therapy should not be mutually exclusive but should
instead be directed toward maintaining good phosphate
control while providing some amount of injectable vitamin
D.1,2 The use of paricalcitol may be preferable to other agents.

Stages 3 and 4 CKD. As suggested by the K/DOQI
guidelines, it is important that early treatment with activated
vitamin D be incorporated, at least by stage 3 CKD, to fully
maximize its inhibitory effect on parathyroid gland growth.
Several studies show that activated forms of vitamin D
effectively reduce PTH levels in stages 3 and 4 CKD whereas
there are no studies showing that treatment with ergocalci-
ferol or cholecalciferol (vitamin D3) is effective in decreasing
PTH in this patient population. Thus, although it is
important to improve nutritional stores of 25-hydroxy-
vitamin D using ergocalciferol, evidence-based practice should
focus on the use of activated vitamin D to ensure sustained
control of PTH levels with minimal effects on calcium and
phosphate homeostasis. Because moderate elevations of
intact PTH (e.g. 60–120 pg/ml) are associated with significant
bone loss in this patient population,50 who are not likely to
have adynamic bone turnover, either before or after
treatment with activated vitamin D,49 it makes sense that
PTH levels should be maintained within the normal range
during stages 3 and 4 CKD in an effort not only to prevent
bone loss and the progression of parathyroid gland
hyperplasia but also to mitigate the deleterious effects of
hyperparathyroidism on cardiovascular function.
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